Kernel learning backward SDE filter for data assimilation
نویسندگان
چکیده
In this paper, we develop a kernel learning backward SDE filter method to estimate the state of stochastic dynamical system based on its partial noisy observations. A forward differential equations is used propagate target model, and Bayesian inference applied incorporate observational information. To characterize model in entire space, introduce learn continuous global approximation for conditional probability density function by using discrete approximated values as training data. Numerical experiments demonstrate that highly effective.
منابع مشابه
Merging particle filter for sequential data assimilation
A new filtering technique for sequential data assimilation, the merging particle filter (MPF), is proposed. The MPF is devised to avoid the degeneration problem, which is inevitable in the particle filter (PF), without prohibitive computational cost. In addition, it is applicable to cases in which a nonlinear relationship exists between a state and observed data where the application of the ens...
متن کاملLearning Rotation for Kernel Correlation Filter
Kernel Correlation Filters have shown a very promising scheme for visual tracking in terms of speed and accuracy on several benchmarks. However it suffers from problems that affect its performance like occlusion, rotation and scale change. This paper tries to tackle the problem of rotation by reformulating the optimization problem for learning the correlation filter. This modification (RKCF) in...
متن کاملAn Ensemble Kalman Filter and Smoother for Satellite Data Assimilation
This paper proposes a methodology for combining satellite images with advection-diffusion models for interpolation and prediction of environmental processes. We propose a dynamic state-space model and an ensemble Kalman filter and smoothing algorithm for on-line and retrospective state estimation. Our approach addresses the high dimensionality, measurement bias, and nonlinearities inherent in s...
متن کاملSPE 109808 An Iterative Ensemble Kalman Filter for Data Assimilation
The ensemble Kalman filter (EnKF) is a subject of intensive investigation for use as a reservoir management tool. For strongly nonlinear problems, however, EnKF can fail to achieve an acceptable data match at certain times in the assimilation process. Here, we provide iterative EnKF procedures to remedy this deficiency and explore the validity of these iterative methods compared to standard EnK...
متن کاملA Hybrid Particle-Ensemble Kalman Filter for Lagrangian Data Assimilation
Lagrangian measurements from passive ocean instruments provide a useful source of data for estimating and forecasting the ocean’s state (velocity field, salinity field, etc). However, trajectories from these instruments are often highly nonlinear, leading to difficulties with widely-used data assimilation algorithms such as the ensemble Kalman filter (EnKF). Additionally, the velocity field is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2022
ISSN: ['1090-2716', '0021-9991']
DOI: https://doi.org/10.1016/j.jcp.2022.111009